A. Making lists:
$\mathbf{L}=[\mathrm{]}$ (the empty list, which is the list with no elements)
L = ["abc", "de", "fghij", 1, [2, 3]]: this list has 5 elements: three strings, one integer and one list.
$L=L 1+L 2$, where $L 1$ and $L 2$ are lists. This concatenates $L 1$ and $L 2$ into a new list L .
$L=L 1^{*}$ 3, where $L 1$ is a list. This makes a new list L, which is the concatenation of L1 3 times, as in L1 + L1 + L1.
B. Indexing:
$\mathrm{L}[0]$: the first element in list L
$\mathrm{L}[1]$: the second element in list L
L [2:5]: a slice of list L, which is a new list consisting of the elements at positions 2,3 , and 4 (but not 5) of L.
C. Changing the contents of the list, without changing the list itself:
$L[i]=\mathbf{a}$ changes the value of the ith entry of L to a
L.append (\mathbf{x}) : adds x to the end of the list L
L.extend(L1): where L1 is a list. This adds all the entries of L1 onto L
L.sort (): sorts, or arranges in order, the entries of L
L.sort (compare): again, this sorts the entries of L, using compare as a function to compare two entries. compare(a, b) should return -1 if $a<b, 0$ if $a==b$, and 1 if $a>b$
L.reverse() : reverses the order of the entries of L
del $L[i]$: deletes the ith element of L
$\mathrm{L}[\mathrm{i}: \mathrm{j}]=[]$ deletes the index i through j slice of L
D. Other stuff
len(L): the length, or number of entries, of L
for \mathbf{x} in L : iterates a loop over all entries of L
x in L : returns True if L has an entry whose value is x
L.index (v) : returns the index of the first entry of L that equals v; crashes if L does not contain v

