

A. Making lists:

L = [] (the empty list, which is the list with no elements)

L = ["abc", "de", "fghij", 1 , [2 , 3]] : this list has 5 elements: three strings,

one integer and one list.

L = L1 + L2 , where L1 and L2 are lists. This concatenates L1 and L2 into a

new list L.

L = L1 * 3 , where L1 is a list. This makes a new list L, which is the

concatenation of L1 3 times, as in L1 + L1 + L1 .

B. Indexing:

 L[0] : the first element in list L

 L[1] : the second element in list L

L[2:5] : a slice of list L, which is a new list consisting of the elements at

positions 2, 3, and 4 (but not 5) of L.

C. Changing the contents of the list, without changing the list itself:

 L[i] = a changes the value of the ith entry of L to a

L.append(x) : adds x to the end of the list L

L.ext end(L1) : where L1 is a list. This adds all the entries of L1 onto L

L.sort () : sorts, or arranges in order, the entries of L

L.sort (compare) : again, t his sort s t he ent ries of L, using

 compare as a funct ion t o compare t wo ent ries. compare(a, b)

should ret urn -1 if a < b, 0 if a == b, and 1 if a > b

L.reverse() : reverses the order of the entries of L

del L[i] : deletes the ith element of L

L[i:j] = [] deletes the index i through j slice of L

D. Other stuff

len(L) : the length, or number of entries, of L

for x in L: iterates a loop over all entries of L

x in L: returns True if L has an entry whose value is x

L.index(v) : returns the index of the first entry of L that equals v; crashes if L

does not contain v

